Inverse Spectra

A. Chigogidze

Editura: North-Holland
This is a comprehensive introduction into the method of inverse spectra - a powerful method successfully employed in various branches of topology. The notion of an inverse sequence and its limits, first appeared in the well-known memoir by Alexandrov where a special case of inverse spectra - the so-called projective spectra - were considered. The concept of an inverse spectrum in its present form was first introduced by Lefschetz. Meanwhile, Freudental, had introduced the notion of a morphism of inverse spectra. The foundations of the entire method of inverse spectra were laid down in these basic works. Subsequently, inverse spectra began to be widely studied and applied, not only in the various major branches of topology, but also in functional analysis and algebra. This is not surprising considering the categorical nature of inverse spectra and the extraordinary power of the related techniques. Updated surveys (including proofs of several statements) of the Hilbert cube and Hilbert space manifold theories are included in the book. Recent developments of the Menger and Nobeling manifold theories are also presented. This work significantly extends and updates the author's previously published book and has been completely rewritten in order to incorporate new developments in the field.
  • Limba : Engleza
  • Cuprins : Preface. Inverse Spectra. Preliminary information. Definitions and elementary properties of inverse spectra. Factorizing spectra and the spectral theorem. Infinite-Dimensional Manifolds. Absolute extensors and absolute retracts. Z-sets in AN R-spaces. R - and I -manifolds. Topology of R - and I -manifolds. Incomplete manifolds. Cohomological Dimension. Cohomological dimension. Cell-like mappings raising dimension. Universal space for cohomological dimension. Menger Manifolds. General theory. n-soft mappings of compacta, raising dimension. n-soft mappings of Polish spaces, raising dimension. Further properties of Menger manifolds. Homeomorphism groups. &ohgr;-soft map of &sgr; onto &Sgr;. Nobeling Manifolds. Strongly A ,n-universal spaces. Pseudo-interiors and pseuod-boundaries of Menger compacta. Geometric pseudo-boundaries. Equivalence of categorical and geometric pseudo-interiors. Equivalence of the Nobeling space and the pseudo-interior of &mgr;n. Further properties of Nobeling spaces. Open subspaces o
  • Data Publicarii : 29 Mar 1996
  • Format : Hardback
  • Numar pagini : 432
  • ISBN : 9780444822253
634.99 Lei
Disponibilitate : La comanda

Stocul este limitat la furnizorii nostri. Disponibilitatea si termenul de livrare va vor fi comunicate telefonic in maxim 48 de ore. Puteti anula comanda in cazul in care informatiile furnizate nu va sunt convenabile.